NOTE: Enter your data in yellow cells and results in blue cells will automatically update.

FAN LAWS

Notes:

Air Density is constant, Specific Gravity of Air is 1, Fan Size is the same.

1 = Existing Condition; 2 = New Condition

New BHP

New BHP From Change in CFM	
$BHP_2 = \left(\frac{CFM_2}{CFM_1}\right)^3 \times BHP_1$	
CFM ₁	10,000
BHP ₁	10.00
CFM ₂	7,000
BHP ₂ =	3.43

New BHP From Change in RPM	
$BHP_2 = \left(\frac{RPM_2}{RPM_1}\right)^3 \times BHP_1$	
RPM₁	850
BHP ₁	10.00
RPM ₂	800
BHP ₂ =	8.34

New BHP From Change in SP	
$BHP_2 = \left(\frac{SP_2}{SP_1}\right)^{1.5} \times BHP_1$	
SP ₁	2.40
BHP ₁	10.00
SP ₂	2.00
BHP ₂ = 7.61	

New CFM

New CFM From Change in BHP	
$CFM_2 = \sqrt[3]{\frac{BHP_2}{BHP_1}} \times CFM_1$	
BHP ₁	10.00
CFM ₁	10,000.00
BHP ₂ 3.43	
CFM ₂ = 7,000	

New CFM From Change in RPM	
$CFM_2 = \frac{RPM_2}{RPM_1} \times CFM_1$	
RPM₁	850
CFM ₁	10,000
RPM ₂ 680	
CFM ₂ = 8,000	

New CFM From Change in SP	
$CFM_2 = \sqrt{\frac{SP_2}{SP_1}} \times CFM_1$	
SP ₁	2.40
CFM ₁	10,000
SP ₂	1.54
CFM ₂ =	8,010

New SP

New SP From C	Change in CFM
$SP_2 = \left(\frac{CFM_2}{CFM_1}\right)^2 \times SP_1$	
CFM ₁	10,000
SP ₁	2.40
CFM ₂ 8,000	
SP ₂ =	1.54

New SP From Change in RPM	
$SP_2 = \left(\frac{RPM_2}{RPM_1}\right)^2 \times SP_1$	
RPM₁	850
SP ₁	2.40
RPM ₂	800
SP ₂ =	2.13

New SP From (Change in BHP
$SP_2 = 1.5 \sqrt{\frac{BHP_2}{BHP_1}} \times SP_1$	
BHP ₁	10.00
SP ₁	2.40
BHP ₂	8
SP ₂ =	2.00

PW RPM

New RPM From Change in CFM	
$RPM_2 = \frac{CFM_2}{CFM_1} \times RPM_1$	
CFM ₁	10,000
RPM₁	850
CFM ₂	8,000
RPM ₂ =	680

New RPM From Change in SP	
$RPM_{2} = \sqrt{\frac{SP_{2}}{SP_{1}}} \times RPM_{1}$	
SP ₁	2.40
RPM₁	850
SP ₂	2.13
RPM ₂ =	801

New RPM From Change in BHP	
$RPM_2 = \sqrt[3]{\frac{BHP_2}{BHP_1}} \times RPM_1$	
BHP₁	10.00
RPM_1	850
BHP ₂	8.34
RPM ₂ =	800